Figure 3–7. Example of a completed DA Form 2397–5, Part VI, Wreckage Distribution
3–8. DA Form 2397–5, Part VI, Wreckage Distribution

a. Instruction. DA Form 2397–5 (see fig 3–7) will be submitted with each technical report when needed to substantiate information that is not clarified by other data reported in the DA Form 2397-series. A decision to not include this from should not be construed to mean diagramming of the crash scene will not be used as an investigation technique. The board may be required to furnish a copy upon request.

b. Form terminology
 (1) Wreckage distribution. The location of all aircraft components in their post-crash positions. The locations should be shown relative to the flight path of the aircraft with the azimuth and distance from a given reference point.
 (2) Initial impact. The first contact of the aircraft with terrain or obstacles.
 (3) Secondary impact. An impact that is less severe than the major impact. Several secondary impacts may occur in an accident.
 (4) Major impact. The impact causing the most severe crash forces.

a. Also see paragraph 3–8.

Note. The current electronic version of DA Form 2397–5 does not allow the entry of information in block 1 of the form itself. An alternate method for submission of block 1 information is to attach an appropriate diagram containing the block 1 information (for example, Word, PowerPoint). The actual DA Form 2397–5 with block 2 information should be included in addition to the attached document. The electronic version of the form provides a dropdown menu, allowing the attachment of external files to the form. Click on the dropdown window located at the center top of the form and follow the dropdown display.

b. General. Orient the flight path (at instant of initial impact) along the horizontal or vertical axis of the grid and show the direction of true north, oriented to the top of the page, with an arrow. This procedure eases the task of locating the aircraft component(s) laterally and longitudinally along the crash path. A suggested scale of 40 feet per inch is shown. Actual scale used is to be entered. Show wind direction with an arrow pointed in the direction of the wind flow. Identify wind direction in degrees and velocity in knots.

c. Complete instructions as follows:
 (1) 1) Block 1. Use grid to show the following information:
 (a) Location of all aircraft major and significant components.
 (b) Obstacles struck by aircraft in crash sequence. For example, structure, trees, power lines.
 (c) Terrain marks made by aircraft in crash sequence. For example, earth gouge length, width, and depth, snow or earth pushed in front of aircraft.
 (d) A profile view of the wreckage distribution, especially if the impact occurs on sloped terrain or on obstacles in the flight path.
 (e) If necessary, use more than one form to show the profile view of the crash sequence, especially if the initial impact occurs on a tall tree or power line where a large vertical axis is needed.
 (f) For midair collisions, construct a composite diagram (wreckage distribution of both aircraft superimposed on the same plot).
 (g) For a widely scattered wreckage distribution, use a larger grid sheet if needed, and attach it to this form.
 (h) If the aircraft rolls over or noses over one or more times along the crash path, so indicate by use of curved arrows.
 (i) Identify initial, major, and secondary impact points, as applicable.
 (j) Show location of key witnesses.
 (k) Show location of personnel thrown or ejected from the aircraft.

Note. A polar diagram is another acceptable method of diagramming rotary-wing or fixed-wing accident sites. The top of the diagram can represent north. A readily identifiable portion of the wreckage, for example, fuselage, nose, wing, can serve as a point of origin or pole for the diagram. Choose a scale that will allow plotting of the whole accident scene. Determine the compass heading of the aircraft at its final resting place and position a semblance of the aircraft on the diagram so debris can be plotted from that point. Determine the compass heading and distance of pieces of wreckage from the main body of the wreckage. Number the location of each piece of wreckage at the position it was found relative to the main wreckage. Define the numbers with a legend that identifies each piece of wreckage and shows its direction and distance from the main wreckage.

(2) Block 2. Enter the case number as shown on the DA Form 2397–1, block
(3) Block 3. Use only for aircraft other than “case aircraft” in accidents involving more than one aircraft. Enter serial number of other aircraft to which the form applies.